Anatomy and Diseases of the Greater Wings of the Sphenoid Bone - RSNA Publications Online

Abstract

Evaluation of the greater wings of the sphenoid bone is difficult because of the complex anatomy and the wide range of diseases that can affect this area, but a systematic approach to cross-sectional imaging can help in the diagnosis and reporting of these lesions.

The greater wings of the sphenoid bone (GWS) comprise the components of the sphenoid bone that make up most of the posterior orbital wall and form the anterior and medial parts of the floor of the middle cranial fossa. Many important skull base foramina, which transmit vital neurovascular structures, are present in these paired wings on either side of the central body of the sphenoid bone. A wide variety of diseases can affect the GWS, ranging from benign osseus lesions to malignant primary and secondary bone abnormalities. The complex three-dimensional curved (winged) shape of the GWS and the wide array of pathologic entities that affect this bone can make it challenging for the radiologist to report the imaging findings accurately, especially in relation to the important skull base foramina. The authors describe a systematic approach to understanding the three-dimensional anatomy of the GWS and review important diseases, with the aid of imaging examples. Useful imaging "pearls" that can help in making specific diagnoses are provided throughout the article.

©RSNA, 2022

References

  • 1. Jamil RT, Callahan AL. Anatomy, Sphenoid Bone Blood Supply and Lymphatics. 2020; 1–4. https://www.ncbi.nlm.nih.gov/books/NBK544308/. Accessed March 17, 2022. Google Scholar
  • 2. Costea C, Turliuc S, Cucu A, et al . The "polymorphous" history of a polymorphous skull bone: the sphenoid . Anat Sci Int 2018 ; 93 ( 1 ): 14 – 22 . Crossref, Medline, Google Scholar
  • 3. Ginsberg LE, Pruett SW, Chen MYM, Elster AD . Skull-base foramina of the middle cranial fossa: reassessment of normal variation with high-resolution CT . AJNR Am J Neuroradiol 1994 ; 15 ( 2 ): 283 – 291 . Medline, Google Scholar
  • 4. Daniels DL, Mark LP, Mafee MF, et al . Osseous anatomy of the orbital apex . AJNR Am J Neuroradiol 1995 ; 16 ( 9 ): 1929 – 1935 . Medline, Google Scholar
  • 5. Bidarkotimath S, Viveka S, Udyavar A . Vidian canal: radiological anatomy and functional correlations . J Morphol Sci 2012 ; 29 ( 1 ): 27 – 31 . http://www.jms.periodikos.com.br/article/587cb4ae7f8c9d0d058b47ed . Google Scholar
  • 6. Norton N . Netter's Head and Neck Anatomy for Dentistry . 3rd ed . Philadelphia, Pa : Elsevier , 2017 . Google Scholar
  • 7. Krayenbühl N, Isolan GR, Al-Mefty O . The foramen spinosum: a landmark in middle fossa surgery . Neurosurg Rev 2008 ; 31 ( 4 ): 397 – 401 ; discussion 401–402 . Crossref, Medline, Google Scholar
  • 8. Miller TT . Bone tumors and tumorlike conditions: analysis with conventional radiography . Radiology 2008 ; 246 ( 3 ): 662 – 674 . Google Scholar
  • 9. Caracciolo JT, Temple HT, Letson GD, Kransdorf MJ . A Modified Lodwick-Madewell Grading System for the Evaluation of Lytic Bone Lesions . AJR Am J Roentgenol 2016 ; 207 ( 1 ): 150 – 156 . Crossref, Medline, Google Scholar
  • 10. Rana RS, Wu JS, Eisenberg RL . Periosteal reaction . AJR Am J Roentgenol 2009 ; 193 ( 4 ): W259 – W272 . Crossref, Medline, Google Scholar
  • 11. Erol B, Er T, Aycan OE, Topkar OM. Bone Tumors. In: Korkusuz F, ed. Musculoskeletal Research and Basic Science. Cham, Switzerland: Springer, 2016; 603–629. Crossref, Google Scholar
  • 12. Kim KS, Rogers LF, Goldblatt D . CT features of hyperostosing meningioma en plaque . AJR Am J Roentgenol 1987 ; 149 ( 5 ): 1017 – 1023 . Crossref, Medline, Google Scholar
  • 13. Earwaker J . Anatomic variants in sinonasal CT . RadioGraphics 1993 ; 13 ( 2 ): 381 – 415 . Link, Google Scholar
  • 14. Mohebbi A, Rajaeih S, Safdarian M, Omidian P . The sphenoid sinus, foramen rotundum and vidian canal: a radiological study of anatomical relationships . Rev Bras Otorrinolaringol (Engl Ed) 2017 ; 83 ( 4 ): 381 – 387 . Medline, Google Scholar
  • 15. Hewaidi G, Omami G . Anatomic Variation of Sphenoid Sinus and Related Structures in Libyan Population: CT Scan Study . Libyan J Med 2008 ; 3 ( 3 ): 128 – 133 . Crossref, Medline, Google Scholar
  • 16. Jalali E, Tadinada A . Arrested pneumatization of the sphenoid sinus mimicking intraosseous lesions of the skull base . Imaging Sci Dent 2015 ; 45 ( 1 ): 67 – 72 . Crossref, Medline, Google Scholar
  • 17. Settecase F, Harnsberger HR, Michel MA, Chapman P, Glastonbury CM . Spontaneous lateral sphenoid cephaloceles: anatomic factors contributing to pathogenesis and proposed classification . AJNR Am J Neuroradiol 2014 ; 35 ( 4 ): 784 – 789 . Crossref, Medline, Google Scholar
  • 18. Welker KM, DeLone DR, Lane JI, Gilbertson JR . Arrested pneumatization of the skull base: imaging characteristics . AJR Am J Roentgenol 2008 ; 190 ( 6 ): 1691 – 1696 . Crossref, Medline, Google Scholar
  • 19. Fitzpatrick KA, Taljanovic MS, Speer DP, et al . Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation . AJR Am J Roentgenol 2004 ; 182 ( 6 ): 1389 – 1398 . Crossref, Medline, Google Scholar
  • 20. Chong VFH, Khoo JBK, Fan YF . Fibrous dysplasia involving the base of the skull . AJR Am J Roentgenol 2002 ; 178 ( 3 ): 717 – 720 . Crossref, Medline, Google Scholar
  • 21. Gokce E, Beyhan M . Radiological Imaging Findings of Craniofacial Fibrous Dysplasia . Turk Neurosurg 2020 ; 30 ( 6 ): 799 – 807 . Medline, Google Scholar
  • 22. Kushchayeva YS, Kushchayev SV, Glushko TY, et al . Fibrous dysplasia for radiologists: beyond ground glass bone matrix . Insights Imaging 2018 ; 9 ( 6 ): 1035 – 1056 . Crossref, Medline, Google Scholar
  • 23. Gomez CK, Schiffman SR, Bhatt AA . Radiological review of skull lesions . Insights Imaging 2018 ; 9 ( 5 ): 857 – 882 . Crossref, Medline, Google Scholar
  • 24. Shatzkes DR . Vascular anomalies: Description, classification and nomenclature . Appl Radiol 2018 ; 18 ( ): 4 https://www.appliedradiology.com/articles/vascular-anomalies-description-classification-and-nomenclature. Accessed March 18. Google Scholar
  • 25. Hale AT, Wang L, Strother MK, Chambless LB . Differentiating meningioma grade by imaging features on magnetic resonance imaging . J Clin Neurosci 2018 ; 48 : 71 – 75 . Crossref, Medline, Google Scholar
  • 26. Simas NM, Farias JP . Sphenoid Wing en plaque meningiomas: Surgical results and recurrence rates . Surg Neurol Int 2013 ; 4 ( 1 ): 86 . Crossref, Medline, Google Scholar
  • 27. Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas RV . An overview of meningiomas . Future Oncol 2018 ; 14 ( 21 ): 2161 – 2177 . Crossref, Medline, Google Scholar
  • 28. Flannery T, Abouharb A, McKinstry S . Computed tomographic imaging of meningiomas . Handb Clin Neurol 2020 ; 169 : 167 – 175 . Crossref, Medline, Google Scholar
  • 29. Charbel FT, Hyun H, Misra M, Gueyikian S, Mafee RF . Juxtaorbital en plaque meningiomas. Report of four cases and review of literature . Radiol Clin North Am 1999 ; 37 ( 1 ): 89 – 100 . Crossref, Medline, Google Scholar
  • 30. Abdel-Aziz KM, Froelich SC, Dagnew E, et al . Large sphenoid wing meningiomas involving the cavernous sinus: conservative surgical strategies for better functional outcomes . Neurosurgery 2004 ; 54 ( 6 ): 1375 – 1383 ; discussion 1383–1384 . Crossref, Medline, Google Scholar
  • 31. Forlino D, Manzone P, Gomel MC, Nicoli MB, Pedrini C . Craniofacial and skull base findings in Langerhans cell histiocytosis in pediatric patients [in Spanish] . Rev Argent Radiol 2013 ; 77 ( 1 ): 1 – 9 . Google Scholar
  • 32. Chaudhary V, Bano S, Aggarwal R, et al . Neuroimaging of Langerhans cell histiocytosis: a radiological review . Jpn J Radiol 2013 ; 31 ( 12 ): 786 – 796 . Crossref, Medline, Google Scholar
  • 33. Lee SK, Jung TY, Jung S, Han DK, Lee JK, Baek HJ . Solitary Langerhans cell histocytosis of skull and spine in pediatric and adult patients . Childs Nerv Syst 2014 ; 30 ( 2 ): 271 – 275 . Crossref, Medline, Google Scholar
  • 34. Chong V . Skull Base Imaging. St Louis , Mo : Elsevier , 2018 . Google Scholar
  • 35. Špero M, Vavro H . Neuroradiology - Expect the Unexpected . Cham, Switzerland : Springer , 2018 . Crossref, Google Scholar
  • 36. Skolnik AD, Loevner LA, Sampathu DM, et al . Cranial Nerve Schwannomas: Diagnostic Imaging Approach . RadioGraphics 2016 ; 36 ( 5 ): 1463 – 1477 . Link, Google Scholar
  • 37. Naran S, Swanson JW, Ligh CA, Shubinets V, Taylor JA, Bartlett SP . Sphenoid Dysplasia in Neurofibromatosis: Patterns of Presentation and Outcomes of Treatment . Plast Reconstr Surg 2018 ; 142 ( 4 ): 518e – 526e . Crossref, Medline, Google Scholar
  • 38. Jacquemin C, Bosley TM, Liu D, Svedberg H, Buhaliqa A . Reassessment of sphenoid dysplasia associated with neurofibromatosis type 1 . AJNR Am J Neuroradiol 2002 ; 23 ( 4 ): 644 – 648 . Medline, Google Scholar
  • 39. Harbert F, Kean H . Juvenile Angiofibroma . Laryngoscope 1964 ; 74 ( 11 ): 1550 – 1556 . Crossref, Medline, Google Scholar
  • 40. Álvarez Jáñez F, Barriga LQ, Iñigo TR, Roldán Lora F . Diagnosis of Skull Base Osteomyelitis . RadioGraphics 2021 ; 41 ( 1 ): 156 – 174 . Link, Google Scholar
  • 41. Connor SEJ . The Skull Base in the Evaluation of Sinonasal Disease: Role of Computed Tomography and MR Imaging . Neuroimaging Clin N Am 2015 ; 25 ( 4 ): 619 – 651 . Crossref, Medline, Google Scholar
  • 42. Awad M, Gogos AJ, Kaye AH . Skull base chondrosarcoma . J Clin Neurosci 2016 ; 24 : 1 – 5 . Crossref, Medline, Google Scholar
  • 43. Razek AAKA . Imaging appearance of bone tumors of the maxillofacial region . World J Radiol 2011 ; 3 ( 5 ): 125 – 134 . Crossref, Medline, Google Scholar
  • 44. Scelsi CL, Wang A, Garvin CM, Bajaj M, Forseen SE, Gilbert BC . Head and Neck Sarcomas: A Review of Clinical and Imaging Findings Based on the 2013 World Health Organization Classification . AJR Am J Roentgenol 2019 ; 212 ( 3 ): 644 – 654 . Crossref, Medline, Google Scholar
  • 45. Loureiro BMC, Altemani JMC, Reis F, Altemani AM de AM . Osteossarcoma crâniofacial: um enfoque imagenológico . Rev Bras Odontol 2017 ; 74 ( 2 ): 176 – 178 . Crossref, Google Scholar
  • 46. Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K . Primary bone lymphoma: radiographic-MR imaging correlation . RadioGraphics 2003 ; 23 ( 6 ): 1371 – 1383 ; discussion 1384–1387 . Link, Google Scholar
  • 47. Freling NJM, Merks JHM, Saeed P, et al . Imaging findings in craniofacial childhood rhabdomyosarcoma . Pediatr Radiol 2010 ; 40 ( 11 ): 1723 – 1738 ; quiz 1855 . Crossref, Medline, Google Scholar
  • 48. Cerase A, Tarantino A, Gozzetti A, et al . Intracranial involvement in plasmacytomas and multiple myeloma: a pictorial essay . Neuroradiology 2008 ; 50 ( 8 ): 665 – 674 . Crossref, Medline, Google Scholar
  • 49. Colas L, Caron S, Cotten A . Skull Vault Lesions: A Review . AJR Am J Roentgenol 2015 ; 205 ( 4 ): 840 – 847 . Crossref, Medline, Google Scholar
  • 50. Greenberg HS, Deck MD, Vikram B, Chu FC, Posner JB . Metastasis to the base of the skull: clinical findings in 43 patients . Neurology 1981 ; 31 ( 5 ): 530 – 537 . Crossref, Medline, Google Scholar
  • 51. Ugga L, Cuocolo R, Cocozza S, et al . Spectrum of lytic lesions of the skull: a pictorial essay . Insights Imaging 2018 ; 9 ( 5 ): 845 – 856 . Crossref, Medline, Google Scholar
  • 52. Mitsuya K, Nakasu Y, Horiguchi S, et al . Metastatic skull tumors: MRI features and a new conventional classification . J Neurooncol 2011 ; 104 ( 1 ): 239 – 245 . Crossref, Medline, Google Scholar
  • 53. Badger D, Aygun N . Imaging of Perineural Spread in Head and Neck Cancer . Radiol Clin North Am 2017 ; 55 ( 1 ): 139 – 149 . Crossref, Medline, Google Scholar

Article History

Received: Mar 29 2021
Revision requested: July 22 2021
Revision received: Sept 28 2021
Accepted: Oct 5 2021
Published online: June 03 2022

Comments

Popular posts from this blog

I Wish I Didn't Need an Oncologist at All, But I'm Thankful for the One ...

Early symptoms of cancer in males: Common warning signs

20 Famous Men Who Have Had Prostate Cancer