Prostate MRI in Stereotactic Body Radiation Treatment Planning and Delivery for Localized Prostate Cancer - RSNA Publications Online

Abstract

In patients with prostate cancer, prostate MRI can be used to detect and diagnose disease, identify dominant intraprostatic lesions that may be treated with a higher radiation dose, help segment radiation treatment targets, and evaluate fiducial marker and hydrogel spacer placements for radiation treatment planning and delivery.

Prostate MRI is increasingly being used to make diagnoses and guide management for patients receiving definitive radiation treatment for prostate cancer. Radiologists should be familiar with the potential uses of prostate MRI in radiation therapy planning and delivery. Radiation therapy is an established option for the definitive treatment of localized prostate cancer. Stereotactic body radiation therapy (SBRT) is an external-beam radiation therapy method used to deliver a high dose of radiation to an extracranial target in the body, often in five or fewer fractions. SBRT is increasingly being used for prostate cancer treatment and has been recognized by the National Comprehensive Cancer Network as an acceptable definitive treatment regimen for low-, intermediate-, and high-risk prostate cancer. MRI is commonly used to aid in prostate radiation therapy. The authors review the uses of prostate MRI in SBRT treatment planning and delivery. Specific topics discussed include the use of prostate MRI for identification of and dose reduction to the membranous and prostatic urethra, which can decrease the risk of acute and late toxicities. MRI is also useful for identification and appropriate dose coverage of the prostate apex and areas of extraprostatic extension or seminal vesicle invasion. In prospective studies, prostate MRI is being validated for identification of and dose intensification to dominant intraprostatic lesions, which potentially can improve oncologic outcomes. It also can be used to evaluate the placement of fiducial markers and hydrogel spacers for radiation therapy planning and delivery.

©RSNA, 2022

References

  • 1. Sciarra A, Barentsz J, Bjartell A, et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 2011; 59( 6): 962– 977. Crossref, Medline, Google Scholar
  • 2. American College of Radiology. Prostate Imaging Reporting & Data System (PI-RADS). American College of Radiology website. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS. Accessed March 28, 2021. Google Scholar
  • 3. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313( 4): 390– 397. Crossref, Medline, Google Scholar
  • 4. Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin 2016; 66( 4): 326– 336. Crossref, Medline, Google Scholar
  • 5. Hamdy FC, Donovan JL, Lane JA, et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016; 375( 15): 1415– 1424. Crossref, Medline, Google Scholar
  • 6. Stokes WA, Kavanagh BD, Raben D, Pugh TJ. Implementation of hypofractionated prostate radiation therapy in the United States: A National Cancer Database analysis. Pract Radiat Oncol 2017; 7( 4): 270– 278. Crossref, Medline, Google Scholar
  • 7. Morris WJ, Tyldesley S, Rodda S, et al. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT trial): an analysis of survival endpoints for a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2017; 98( 2): 275– 285. Medline, Google Scholar
  • 8. Widmark A, Gunnlaugsson A, Beckman L, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019; 394( 10196): 385– 395. Crossref, Medline, Google Scholar
  • 9. National Comprehensive Cancer Network. National Comprehensive Cancer Network (NCCN) guidelines version 2.2021 prostate cancer. National Comprehensive Cancer Network website. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed March 28, 2021. Google Scholar
  • 10. McClure TD, Margolis DJA, Reiter RE, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 2012; 262( 3): 874– 883. Link, Google Scholar
  • 11. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ. Advancements in MR imaging of the prostate: from diagnosis to interventions. RadioGraphics 2011; 31( 3): 677– 703. Link, Google Scholar
  • 12. Amin MB, Edge S, Greene F, , et al. AJCC cancer staging manual. 8th ed. New York, NY: Springer International Publishing, 2017. Crossref, Google Scholar
  • 13. Buyyounouski MK, Choyke PL, McKenney JK, et al. Prostate cancer: major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017; 67( 3): 245– 253. Crossref, Medline, Google Scholar
  • 14. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging reporting and data system: 2015, version 2. Eur Urol 2016; 69( 1): 16– 40. Crossref, Medline, Google Scholar
  • 15. de Rooij M, Hamoen EHJ, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 2014; 202( 2): 343– 351. Crossref, Medline, Google Scholar
  • 16. Weaver JK, Kim EH, Vetter JM, et al. Prostate magnetic resonance imaging provides limited incremental value over the Memorial Sloan Kettering Cancer Center preradical prostatectomy nomogram. Urology 2018; 113: 119– 128. Crossref, Medline, Google Scholar
  • 17. Grivas N, Hinnen K, de Jong J, et al. Seminal vesicle invasion on multi-parametric magnetic resonance imaging: correlation with histopathology. Eur J Radiol 2018; 98: 107– 112. Crossref, Medline, Google Scholar
  • 18. Mehralivand S, Shih JH, Harmon S, et al. A grading system for the assessment of risk of extraprostatic extension of prostate cancer at multiparametric MRI. Radiology 2019; 290( 3): 709– 719. Link, Google Scholar
  • 19. Mason BR, Eastham JA, Davis BJ, et al. Current status of MRI and PET in the NCCN guidelines for prostate cancer. J Natl Compr Canc Netw 2019; 17( 5): 506– 513. Crossref, Medline, Google Scholar
  • 20. Kitajima K, Murphy RC, Nathan MA, et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 2014; 55( 2): 223– 232. Crossref, Medline, Google Scholar
  • 21. Morris MJ, Rowe SP, Gorin MA, et al. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR Phase III, Multicenter Study. Clin Cancer Res 2021; 27( 13): 3674– 3682. Crossref, Medline, Google Scholar
  • 22. Afshar-Oromieh A, Holland-Letz T, Giesel FL, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 2017; 44( 8): 1258– 1268. [Published correction appears in Eur J Nucl Med Mol Imaging 2017;44(10):1781.] Crossref, Medline, Google Scholar
  • 23. Emmett L, Tang R, Nandurkar R, et al. 3-Year Freedom from progression after 68Ga-PSMA PET/CT-triaged management in men with biochemical recurrence after radical prostatectomy: results of a prospective multicenter trial. J Nucl Med 2020; 61( 6): 866– 872. Crossref, Medline, Google Scholar
  • 24. Wu SY, Boreta L, Shinohara K, et al. Impact of staging 68Ga-PSMA-11 PET scans on radiation treatment plans in patients with prostate cancer. Urology 2019; 125: 154– 162. Crossref, Medline, Google Scholar
  • 25. Morgan SC, Hoffman K, Loblaw DA, et al. Hypofractionated radiation therapy for localized prostate cancer: executive summary of an ASTRO, ASCO, and AUA evidence-based guideline. Pract Radiat Oncol 2018; 8( 6): 354– 360. Crossref, Medline, Google Scholar
  • 26. Brand DH, Tree AC, Ostler P, et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol 2019; 20( 11): 1531– 1543. Crossref, Medline, Google Scholar
  • 27. McDermott P, Orton C. The physics & technology of radiation rherapy. 2nd ed. Madison, Wis: Medical Physics Publishing, 2018. Crossref, Google Scholar
  • 28. Baldwin LN, Wachowicz K, Fallone BG. A two-step scheme for distortion rectification of magnetic resonance images. Med Phys 2009; 36( 9): 3917– 3926. Crossref, Medline, Google Scholar
  • 29. Lei S, Piel N, Oermann EK, et al. Six-dimensional correction of intra-fractional prostate motion with cyberknife stereotactic body radiation therapy. Front Oncol 2011; 1: 48. Crossref, Medline, Google Scholar
  • 30. Moman MR, van der Heide UA, Kotte AN, et al. Long-term experience with transrectal and transperineal implantations of fiducial gold markers in the prostate for position verification in external beam radiotherapy; feasibility, toxicity and quality of life. Radiother Oncol 2010; 96( 1): 38– 42. Crossref, Medline, Google Scholar
  • 31. Langen KM, Willoughby TR, Meeks SL, et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008; 71( 4): 1084– 1090. Crossref, Medline, Google Scholar
  • 32. Chen X, Xue J, Chen L, et al. CT-MRI fusion uncertainty in prostate treatment planning for different image guidance techniques. Int J Radiat Oncol Biol Phys 2013; 87( 2): S718. Crossref, Google Scholar
  • 33. Roach M 3rd, Faillace-Akazawa P, Malfatti C, Holland J, Hricak H. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 1996; 35( 5): 1011– 1018. Crossref, Medline, Google Scholar
  • 34. Ali AN, Rossi PJ, Godette KD, et al. Impact of magnetic resonance imaging on computed tomography-based treatment planning and acute toxicity for prostate cancer patients treated with intensity modulated radiation therapy. Pract Radiat Oncol 2013; 3( 1): e1– e9. Crossref, Medline, Google Scholar
  • 35. Steenbakkers RJHM, Deurloo KEI, Nowak PJCM, Lebesque JV, van Herk M, Rasch CRN. Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 2003; 57( 5): 1269– 1279. Crossref, Medline, Google Scholar
  • 36. Rosenkrantz AB, Verma S, Turkbey B. Prostate cancer: top places where tumors hide on multiparametric MRI. AJR Am J Roentgenol 2015; 204( 4): W449– W456. Crossref, Medline, Google Scholar
  • 37. Seymour ZA, Chang AJ, Zhang L, et al. Dose-volume analysis and the temporal nature of toxicity with stereotactic body radiation therapy for prostate cancer. Pract Radiat Oncol 2015; 5( 5): e465– e472. Crossref, Medline, Google Scholar
  • 38. Merrick GS, Butler WM, Tollenaar BG, Galbreath RW, Lief JH. The dosimetry of prostate brachytherapy-induced urethral strictures. Int J Radiat Oncol Biol Phys 2002; 52( 2): 461– 468. Crossref, Medline, Google Scholar
  • 39. Salembier C, Villeirs G, De Bari B, et al. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer. Radiother Oncol 2018;127(1): 49–61. Crossref, Medline, Google Scholar
  • 40. Choe KS, Jani AB, Liauw SL. External beam radiotherapy for prostate cancer patients on anticoagulation therapy: how significant is the bleeding toxicity? Int J Radiat Oncol Biol Phys 2010; 76( 3): 755– 760. Crossref, Medline, Google Scholar
  • 41. Hamstra DA, Stenmark MH, Ritter T, et al. Age and comorbid illness are associated with late rectal toxicity following dose-escalated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2013; 85( 5): 1246– 1253. Crossref, Medline, Google Scholar
  • 42. Willett CG, Ooi C-J, Zietman AL, et al. Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int J Radiat Oncol Biol Phys 2000; 46( 4): 995– 998. Crossref, Medline, Google Scholar
  • 43. Hamstra DA, Mariados N, Sylvester J, et al. Continued benefit to rectal separation for prostate radiation therapy: final results of a phase III trial. Int J Radiat Oncol Biol Phys 2017; 97( 5): 976– 985. Crossref, Medline, Google Scholar
  • 44. Karsh LI, Gross ET, Pieczonka CM, et al. Absorbable hydrogel spacer use in prostate radiotherapy: a comprehensive review of phase 3 clinical trial published data. Urology 2018; 115: 39– 44. Crossref, Medline, Google Scholar
  • 45. Fischer-Valuck BW, Chundury A, Gay H, Bosch W, Michalski J. Hydrogel spacer distribution within the perirectal space in patients undergoing radiotherapy for prostate cancer: impact of spacer symmetry on rectal dose reduction and the clinical consequences of hydrogel infiltration into the rectal wall. Pract Radiat Oncol 2017; 7( 3): 195– 202. Crossref, Medline, Google Scholar
  • 46. Atluri PS, Gannavarapu BS, Timmerman RD, et al. Addition of iodinated contrast to rectal hydrogel spacer to facilitate MRI-independent target delineation and treatment planning for prostate cancer. Pract Radiat Oncol 2019; 9( 6): e528– e533. Crossref, Medline, Google Scholar
  • 47. von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, von Eyben R, Joensuu T. Radiotherapy boost for the dominant intraprostatic cancer lesion: a systematic review and meta-analysis. Clin Genitourin Cancer 2016; 14( 3): 189– 197. Crossref, Medline, Google Scholar
  • 48. Boutros PC, Fraser M, Harding NJ, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet 2015; 47( 7): 736– 745. Crossref, Medline, Google Scholar
  • 49. Arrayeh E, Westphalen AC, Kurhanewicz J, et al. Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys 2012; 82( 5): e787– e793. Crossref, Medline, Google Scholar
  • 50. Pucar D, Hricak H, Shukla-Dave A, et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007; 69( 1): 62– 69. Crossref, Medline, Google Scholar
  • 51. Kim DWN, Cho LC, Straka C, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2014; 89( 3): 509– 517. Crossref, Medline, Google Scholar
  • 52. Hannan R, Tumati V, Xie X-J, et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer: results from a multi-institutional clinical trial. Eur J Cancer 2016; 59: 142– 151. Crossref, Medline, Google Scholar
  • 53. Housri N, Ning H, Ondos J, et al. Parameters favorable to intraprostatic radiation dose escalation in men with localized prostate cancer. Int J Radiat Oncol Biol Phys 2011; 80( 2): 614– 620. Crossref, Medline, Google Scholar
  • 54. Herrera FG, Valerio M, Berthold D, et al. 50-Gy stereotactic body radiation therapy to the dominant intraprostatic nodule: results from a phase 1a/b trial. Int J Radiat Oncol Biol Phys 2019; 103( 2): 320– 334. Crossref, Medline, Google Scholar
  • 55. Draulans C, van der Heide UA, Haustermans K, et al. Primary endpoint analysis of the multicentre phase II Hypo-FLAME trial for intermediate and high risk prostate cancer. Radiother Oncol 2020; 147: 92– 98. Crossref, Medline, Google Scholar
  • 56. Alayed Y, Davidson M, Liu S, et al. Evaluating the tolerability of a simultaneous focal boost to the gross tumor in prostate SABR: a toxicity and quality-of-life comparison of two prospective trials. Int J Radiat Oncol Biol Phys 2020; 107( 1): 136– 142. Crossref, Medline, Google Scholar
  • 57. Kerkmeijer LGW, Groen VH, Pos FJ, et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: results from the FLAME randomized phase III trial. J Clin Oncol 2021; 39( 7): 787– 796. Crossref, Medline, Google Scholar
  • 58. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017; 389(...

Comments

Popular posts from this blog

Q&A

Sentinel lymph node biopsy: What cancer patients should know

What Type of Cancer Causes Low Hemoglobin (Anemia)?